by Dr. Bill Rawls Updated 6/21/24

Collagen is so much bigger and more important than the skin plumper it’s best known to be: It plays a role in supporting your body head to toe, organs and all. And if you have a chronic illness like chronic Lyme disease, fibromyalgia, or chronic fatigue syndrome (CFS), there’s a good chance you’re losing your collagen at an accelerated rate. Here’s why, along with smart ways to rebuild the collagen you’ve lost and protect what you have.

What is Collagen?

Did you know that collagen is the most abundant protein in your body? It’s what literally holds you together. For example, collagen fibers come together to form the tendons and ligaments that provide support for your entire skeleton.

And, of course, that flexible cartilage in your joints is made of collagen. But collagen is also a key part of your skin, blood vessels, heart muscle and valves, gums, eyes, and intestines. 

In other words, collagen is really important. But not just to you: Many microbes that inhabit your body want to use it as a source of food. And that’s where things can get complicated.

Collagen Crunchers

Whether or not you’re struggling with a microbe-related chronic illness like chronic Lyme disease or fibromyalgia, you are already in competition with microbes.

We all have a microbiome, a vast ecological community of microbes that exists in our bodies. The microbiome was once thought to be isolated to your gut and skin, but more recent research suggests that it’s quite a bit more complex.

In 2015, a study in PLOS One found that healthy mice have distinct populations of microbes as permanent residents in their muscle, liver, heart, and brain tissue. Since then, human studies have confirmed that microbes exist at low concentrations in the brain tissue, joints, and other organs of healthy people. 

Some of these microbes have the ability to degrade collagen by producing enzymes for breaking down the protein. Many of these collagen-crunchers are typically associated with chronic illness, including borrelia (the prime suspect in Lyme disease), mycoplasma, and chlamydia, among many others.

In healthy people, collagen breakdown by microbes probably occurs at a very low level, but it is not a problem because the immune system is able to keep those microbes in check.

So, a net loss of collagen due to microbes doesn’t occur unless immune system functions are compromised and microbes are allowed to flourish, in which case things can get out of hand quickly. Chronic Lyme disease is possibly the best example of this.

The Link Between Chronic Illness and Collagen Loss

Borrelia is possibly the most well-known microbe with the ability to break down collagen. Not surprisingly, many of the symptoms of chronic Lyme disease occur at locations of high collagen density: joints, ligaments, skin, eyes, gums, heart, and brain tissue. Inflammation and the breakdown of collagen by microbes are likely the driving forces behind symptoms at these locations.

But borrelia isn’t the only microbe causing problems; a long list of possible coinfections exists. Of the collagen-degrading microbes on the list, mycoplasma species are the most well-studied.

Though mycoplasma commonly occurs as a Lyme disease coinfection, it has also been associated with a variety of other chronic illnesses, including rheumatoid arthritis and multiple sclerosis. And it’s been linked with damaged heart valves and arthritic joints (along with other microbes, including chlamydia and borrelia), both of which are associated with collagen loss.

Interest in mycoplasma as a possible cause of rheumatoid arthritis (RA) dates back to the 1970s. In a flurry of research at the time, mycoplasma was found to be present in a high percentage of RA sufferers. However, interest in the connection seemed to die off when antibiotic therapy seemed effective in these patients. It is now known that mycoplasma is extremely resistant to antibiotics.

Interest in the mycoplasma-arthritis link has rekindled. In 2000, a group of researchers published their findings in the Journal of Clinical Microbiology after examining samples of synovial (joint) fluid from the knees of 44 arthritis patients. They were able to detect Mycoplasma fermentans in 88% of cases of rheumatoid arthritis and other forms of arthritis, including ankylosing spondylitis, juvenile chronic arthritis, gout, and psoriatic arthritis (arthritis associated with psoriasis).

Later, in a 2006 study, the same lead researcher found Mycoplasma pneumoniae, a common cause of childhood bronchitis and chronic low-grade pneumonia, in 79% of rheumatoid arthritis patients enrolled in the study, 80% of osteoarthritis patients, and 100% of those with other types of chronic arthritis.

Mycoplasma is a remarkably common microbe in human populations, with 40-60% of healthy people testing positive for some species of it. Though different species of mycoplasma are commonly spread by respiratory and genital infections, once the microbes are in the body, they can show up almost anywhere. Organs rich in collagen are common final residences of the microbe.

When you add mycoplasma to the list of possible microbes that degrade collagen and consider that symptoms of many chronic illnesses involve tissues high in collagen, the possibility of microbes being the driving force behind many types of chronic misery is highly likely.

The bottom line is that everyone harbors microbes with the potential to break down collagen — they’re just waiting for an opportunity. Some microbes are more threatening than others. Whether you will end up suffering from symptoms associated with collagen degradation depends on three factors:

Genetics

Some people are more inherently susceptible to rheumatoid illnesses than others.

Microbes

The type of microbes you pick up during your lifetime and harbor in your tissues can increase your risk.

Immune system function

How factors come together during your lifetime to disrupt your immune system impact the strength of your defenses against collagen-degrading microbes.

While you can’t change your DNA, there’s a lot you can do to suppress stealth microbes and keep your immune system running efficiently so you can prevent accelerated collagen loss.

How to Protect Your Collagen

Whether you’re struggling with a chronic illness associated with symptoms of collagen loss or having aging-related mild arthritis and skin changes, you want to protect the collagen in your body. There are four specific categories of actions you can take.

1. Suppress Collagen-Degrading Microbes with Herbal Therapy

Though mycoplasma and borrelia were my primary examples above, there are many microbes known to break down collagen, which means you can’t target just one. What’s more, most of these microbes fit into the category of stealth microbes, which live inside our cells (intracellularly), grow very slowly, and are widely distributed in low concentrations throughout tissues in the body. Most notably, they are all notoriously resistant to conventional antibiotic therapy.

Antimicrobial Herbs

A better approach is taking certain herbs with known antimicrobial properties, which work differently than conventional antibiotics. Instead of one potent chemical, herbs contain hundreds of chemical compounds known to suppress microbes. These herbal phytochemicals hit the microbes from a variety of different directions at once.

Antimicrobial herbs typically don’t disrupt normal flora and are extremely well tolerated, so they can be used for months or even years. That’s key because long-term suppression appears to be the only effective solution for these microbes.

When multiple antimicrobial herbs are combined, the benefits are synergistic. They also support optimal immune functions and provide protective antioxidants. Some of the best antimicrobial herbs include andrographis, cat’s claw, Japanese knotweed, and garlic.

2. Support Your Immune System

Your immune system’s most important job is managing the wide spectrum of microbes that inhabit your body. A healthy immune system is essential for staying well and protecting collagen. However, the modern world is saturated with factors that disrupt immune system functions — especially our highly-processed diet, exposure to environmental toxins, chronic stress, and a sedentary lifestyle.

The most obvious solution is to take steps to counter these modern-life system disruptors that ding your immune system every day. That means doing things like eating a healthful diet full of fresh, whole foods (more on that below); filtering your water; opting for organic foods and natural, non-toxic cleansers whenever possible; and making time each day for yourself, to find stress relief and move your body.

Herbs  for Immune Support

Herbal therapy is also an excellent choice for supporting optimal immune system functions. Antimicrobial herbs do some of that, but adaptogenic herbs do even more. Not only do adaptogens help reduce damaging inflammation, but they also enhance the immune system’s ability to do its job by balancing hormones and increasing your resistance to stress. Some herbal adaptogens with immune-balancing properties include reishi, cordyceps, ashwagandha, and rhodiola.

3. Support Collagen Turnover

Collagen in your body is constantly being degraded and rebuilt. A healthy diet is key to providing the raw materials needed to build new collagen. At the top of that list are deep-green leafy vegetables, cucumbers, salmon, sardines, eggs, celery, and olives.

Collagen Supplements

You can also get collagen in supplement form; the recommended dose is about 6000 mg daily of collagen powder mixed into a smoothie or shake.

Another supplement to consider is silicon, which is a necessary component of collagen generation, plus it’s important for repairing myelin nerve sheaths. Natural silicon can be obtained from the herb called horsetail, or as stabilized orthosilicic acid, a liquid that’s dosed at about 20 drops a day (this also can be added to smoothies).

Of all supplements for supporting collagen and joint function, glucosamine and eggshell membrane have the most scientific evidence to back them up. Glucosamine is a precursor for the chemical necessary for maintaining smooth joint linings. With age, our glucosamine synthesis decreases, which may be a contributing factor to arthritis. 

4. Minimize Other Collagen Disruptors

Microbes aren’t the only forces that degrade collagen in the body.  Here are some other factors to consider.

 

Sugar and starch

Glucose and fructose — sugars from processed food products, table sugar, high fructose corn syrup, and concentrated fruit sugar — are notorious collagen crunchers. Sugars bind to collagen in a process called glycation and target it for destruction. Plus, the processed foods they’re found in generate inflammation in the body. Try to minimize the amount of sugar you consume, as well as starches (which are quickly digested into sugars). Reach for whole, fresh foods whenever possible.

Poor sleep

Your body repairs damaged collagen while you sleep, so you need at least 8 hours of quality sleep every night for optimal health. The secret of a good night’s sleep is finding moments of calm throughout the day and allowing plenty of time for adequate sleep at night, which may mean tacking on an extra hour to allow for the time it takes you to drift off.

Toxins

Toxins of any variety damage collagen. Smoking is an obvious source because it saturates the body with toxins. If you smoke, it’s time to quit. Pay attention to other, sometimes less obvious toxin sources such as mold in your house or workplace, exposure to paint and varnish fumes, cleaners, pesticides, and even nail polish.

Physical stress

Extreme physical activity causes excessive wear and tear on joints and ligaments. Look for low-impact exercise that’s easier on your body. 

Sunlight and sun protection

The sun’s energy, particularly UV light, damages collagen in the skin and eyes. Sunblock and sunglasses are essentials. You can also gain significant protection by consuming foods containing antioxidants that build up in your skin and eyes. Lutein and zeaxanthin (carrots, yellow vegetables, kale), and anthocyanins (blueberries and blackberries) should be dietary staples. Lutein, zeaxanthin, and astaxanthin are also available in supplement form. These antioxidants also protect collagen in blood vessels and other parts of the body.

The Bottom Line on Collagen Protection and Chronic Illness

Everyone should be thinking about protecting their collagen, but especially those who are staring down a chronic illness. The good news is that the tactics that work best to help support healthy collagen levels are the same ones that are most effective for overcoming Lyme disease, fibromyalgia, and CFS. Follow the tips outlined above, and you’ll be doing double duty for your health.

Dr. Rawls is a physician who overcame Lyme disease through natural herbal therapy. You can learn more about Lyme disease in Dr. Rawls’ community, Vital Plan Network, and helpful book, Unlocking Lyme

You can also learn about Dr. Rawls’ personal journey in overcoming Lyme disease and fibromyalgia in his popular blog post, My Chronic Lyme Journey.

REFERENCES 1. Lluch J et al. The Characterization of Novel Tissue Microbiota Using an Optimized 16S Metagenomic Sequencing Pipeline. PLoS One. 2015 Nov 6;10(11):e0142334. doi: 10.1371/journal.pone.0142334. eCollection 2015. 2. Moreno I, Franasiak JM. Endometrial microbiota-new player in town. Fertil Steril. 2017 Jul;108(1):32-39. 3. Branton WG et al.Brain microbiota disruption within inflammatory demyelinating lesions in multiple sclerosis. Sci Rep. 2016 Nov 28;6:37344. 4. Rashid T, Ebringer A. Autoimmunity in Rheumatic Diseases Is Induced by Microbial Infections via Crossreactivity or Molecular Mimicry. Autoimmune Dis. 2012;2012:539282. 5. Hugon P et al.A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect Dis. 2015 Oct;15(10):1211-1219. 6. Dickson R et al. Spatial Variation in the Healthy Human Lung Microbiome and the Adapted Island Model of Lung Biogeography. Ann Am Thorac Soc. 2015 Jun; 12(6): 821–830. 7. Berer K et al.Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011 Oct 26;479(7374):538-41. 8. Libbey JE, Cusick MF, Fujinami RS. Role of pathogens in multiple sclerosis. Int Rev Immunol. 2014 Jul-Aug;33(4):266-83. 9. Parrott G et al. A Compendium for Mycoplasma pneumoniae. Front Microbiol. 2016; 7: 513. 10. van der Meulen TA et al. The microbiome-systemic diseases connection. Oral Dis. 2016 Nov;22(8):719-734. 11. Casadevall A, Pirofski LA. Host-pathogen interactions: basic concepts of microbial commensalism, colonization, infection, and disease. Infect Immun. 2000 Dec;68(12):6511-8. 12. Tiveron MG et al. Infectious agents is a risk factor for myxomatous mitral valve degeneration: A case control study. BMC Infect Dis. 2017 Apr 21;17(1):297. 13. Caminer AC, Haberman R, Scher JU. Human microbiome, infections, and rheumatic disease. Clin Rheumatol. 2017 Dec;36(12):2645-2653 14.Scher JU. The Microbiome in Psoriasis and Psoriatic Arthritis: Joints. J Rheumatol Suppl. 2018 Jun;94:32-35. 15. Yu-Zhong Zhang et al. Diversity, Structures, and Collagen-Degrading Mechanisms of Bacterial Collagenolytic Proteases. Appl Environ Microbiol. 2015 Sep; 81(18): 6098–6107. 16. Harrington DJ. Bacterial collagenases and collagen-degrading enzymes and their potential role in human disease. Infect Immun. 1996 Jun; 64(6): 1885–1891. 17. J W Czekalowski JW, Hall DA, Woolcook P. Proteolytic activity of Mycoplasma arthritidis. Ann Rheum Dis. 1972 Sep; 31(5): 428. 18. Jansson E et al. Mycoplasmas and arthritis. Z Rheumatol. 1983 Nov-Dec;42(6):315-9. Review. 19. Johnson S et al. Identification of Mycoplasma fermentans in synovial fluid samples from arthritis patients with inflammatory disease. J Clin Microbiol. 2000 Jan;38(1):90-3. 20. Johnson SM, Bruckner F, Collins D. Distribution of Mycoplasma pneumoniae and Mycoplasma salivarium in the synovial fluid of arthritis patients. J Clin Microbiol. 2007 Mar;45(3):953-7. Epub 2006 Nov 22. 21. Denman AM. Rheumatoid arthritis. Aetiology. Br Med J. 1970 Dec 5;4(5735):601-2. Review. 22. Arai M. Mycoplasma in synovial fluid from the patients with rheumatoid arthritis. Tohoku J Exp Med. 1975 Jan;115(1):47-52. 23. Jansson E et al. An 8-year study on mycoplasma in rheumatoid arthritis. Ann Rheum Dis. 1971 Sep;30(5):506-8. 24. Sandhya P et al. Does the buck stop with the bugs?: an overview of microbial dysbiosis in rheumatoid arthritis. Int J Rheum Dis. 2016 Jan;19(1):8-20. 25. Catrina AI, Deane KD, Scher JU. Gene, environment, microbiome and mucosal immune tolerance in rheumatoid arthritis. Rheumatology (Oxford). 2016 Mar;55(3):391-402. 26. Lee N, Kim WU. Microbiota in T-cell homeostasis and inflammatory diseases. Exp Mol Med. 2017 May 26;49(5):e340. 27. Fesler MC, Middelveen MJ, Stricker RB. Clinical evaluation of Morgellons disease in a cohort of North American patients. Dermatol Reports. 2018 Apr 24;10(1):7660. 28. Gebbia JA, Coleman JL, Benach JL. Borrelia spirochetes upregulate release and activation of matrix metalloproteinase gelatinase B (MMP-9) and collagenase 1 (MMP-1) in human cells. Infect Immun. 2001 Jan;69(1):456-62. 29. Grab DJ, Kennedy R, Philipp MT. Borrelia burgdorferi possesses a collagenolytic activity. FEMS Microbiol Lett. 1996 Oct 15;144(1):39-45. 30. Tiveron MG et al. Infectious agents is a risk factor for myxomatous mitral valve degeneration: A case control study. BMC Infect Dis. 2017 Apr 21;17(1):297. 31. Bayram A et al. Demonstration of Chlamydophila pneumoniae, Mycoplasma pneumoniae, Cytomegalovirus, and Epstein-Barr virus in atherosclerotic coronary arteries, nonrheumatic calcific aortic and rheumatic stenotic mitral valves by polymerase chain reaction. Anadolu Kardiyol Derg 238 2011; 11: 237-43. 32. Akbar S. Andrographis paniculata: A Review of Pharmacological Activities and Clinical E!ects. Alt Med Rev. 2011. Vol. 16; 1: 66-77. 33. Raja Ratna Reddy et al. Antimicrobial activity of Azadirachta Indica (neem) leaf, bark and seed extracts. Int. J. Res. Phytochem. Pharmacol. 2013; 3(1), 1-4 34. Navarro-Hoyos M et al. Proanthocyanidin Characterization and Bioactivity of Extracts from Different Parts of Uncaria tomentosa L. (Cat’s Claw). Antioxidants (Basel). 2017 Feb 4;6(1). 35. Su PW et al. Antibacterial Activities and Antibacterial Mechanism of Polygonum cuspidatum Extracts against Nosocomial Drug-Resistant Pathogens. Molecules. 2015 Jun 16;20(6):11119-30. 36. Xu S et al. Chemical constituents from the rhizomes of Smilax glabra and their antimicrobial activity. Molecules. 2013 May 8;18(5):5265-87. 37. Borlinghaus J et al. Allicin: chemistry and biological properties. Molecules. 2014 Aug 19;19(8):12591-618. 38. Ankri S, Mirelman D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1999 Feb;1(2):125-9. Review. 39. Sakkas H, Papadopoulou C. Antimicrobial Activity of Basil, Oregano, and Thyme Essential Oils. J Microbiol Biotechnol. 2017 Mar 28;27(3):429-438. 40. Leyva-López N. Essential Oils of Oregano: Biological Activity beyond Their Antimicrobial Properties. Molecules. 2017 Jun 14;22(6).